ISSN 1870-4069

Band Structures of a Photonic Crystal Waveguide
with Koch Snowflake Fractal Structures

Eduardo Mellado-Villasefior!, Hugo Alva-Medrano?,
Héctor Pérez-Aguilar!

! Universidad Michoacana de San Nicolds de Hidalgo,
Facultad de Ciencias Fisico Matematicas,
Mexico

% Instituto Tecnolégico de Morelia,
Departamento de Ciencias Bésicas,
Mexico

hiperezag@yahoo.com

Abstract. Many applications used today are based on the study of certain
geometric tools; for example, a peculiar geometry known as fractals. In this work
an integral method was developed to calculate the band structures of a photonic
crystal waveguide, formed by two parallel conducting plates and an array of
inclusions involving Koch snowflake fractal structures. The numerical technique
is known as the Integral Equation Method, which starts from Green’s second
identity to solve the two-dimensional Helmholtz equation. We found that varying
the inclusion size for several iterations of the Koch fractal structure allows us
to control the band structure of the system. The results show the appearance
of several band gaps that substantially modify the photonic band structure.
Furthermore, it is possible to obtain discrete modes for a certain frequency range
and then the periodic photonic crystal waveguide acts as an unimodal filter. These
optical properties exhibit some interest from a technological point of view.
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1 Introduccion

By analyzing certain geometric tools with the aim of being used in many research
methods, this leads to the discovery of applications of great interest [2]. For example, a
very peculiar geometry known as fractals, these appear both in nature and in the exact
sciences [1]. Scattering of light by fractal surfaces has attracted some attention over the
years, with the research reported so far being based on approximate approaches to the
scattering equations or with reentrant fractals [4].

On the other hand, the determination of the band structure, reflectance, and
transmittance of one- and two-dimensional photonic crystals with a complex unit cell
structure, such as fractal geometries, has been developed based on the solution of
integral equations [3]. In this context, we present a theoretical and numerical study
of the electromagnetic response of a photonic crystal waveguide (PCW) based on the
adoption Koch snowflake fractal structures.
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Fig.1. Schematic description of a periodic waveguide with inclusions formed with
perfectly-conductive Koch fractal structures.

To solve this problem, it was done using a numerical technique known as the
Integral Equation Method (IEM) [3, 5], which starts from Green’s second identity to
solve the two-dimensional Helmholtz equation. This paper is organized as follows.
In Sec. 2 we introduce an integral method for calculating the dispersion relation to
determine the band structures of PCW with Koch snowflake fractal structures, based
on ideas described in [3, 5]. Sec. 3 shows the numerial results of band structures of
the considered system for different inclusion sizes with several iterations of the Koch
fractal structures. Finally, Sec. 4 presents our conclusions.

2 Theoretical Approach

We consider a two-dimensional PCW, formed by two flat internal walls that
enclose an array of Koch snowflake fractal structures. The surfaces involved are
perfectly-conductive materials and the medium between the walls and the inclusions
is vacuum. The geometry of the system is sketched in Fig. 1. In PCW we consider a
period P in the flat profiles, a separation between the plates of the waveguide plates
given by b and the Koch fractal inclusions for a given iteration, which can be in terms
of the side length L of the original triangle.

2.1 Integral Equation Method

Assuming a time dependency e~ for electromagnetic fields, the wave equation can
be transformed into the Helmholtz equation:

2
w
V2 (r) + nj(w) 5 ¥5(r) = 0, (1)
where j indicates the j-th medium with refractive index n; = /Z; forming the system
under study begin ¢; the electric permittivity, which is shown in Fig. 1. In Eq. (1) w
is the frequency of the electromagnetic wave, c is the speed of light in vacuum, and
r = zi + yj is independent of z.
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The function ¥ represents the electric or magnetic field and the polarization TE is
considered in this work. To solve Eq. (1), we introduce a Green function G(r, r’), as the
solution of the equation given by:

2

V2G(r,v') + n?(w)%Gj (r,r') = —4mé(r — 1), )

where 6(r — r’) is the Dirac delta. A Green function that is a solution of Eq. (2) is
given by:
_
Gy(r,¥') = inHjn, (“"r : ) : )
c
With H(z) the Hankel function of the first kind and zero order. Applying Green’s

second integral theorem [3, 5] for the functions ¥ and G in each region corresponding
to the j-th medium:

1 ov;(r Gj(r, v
R e - o L
where 0;(r) is a step function whose values is one for all points in the medium j-th and
zero otherwise. In Eq. (4) the surface is bounded by the corresponding closed boundary
I'; and the normal derivative 9/0n’ goes outside the boundary I';. To solve Eq. (4) it is
necessary to convert the integro-differential equations into matrix equations by means
of a rectangle approximation to evaluate the integrals in small intervals.

Under this consideration, Eq. (4) is transformed into the system of linear equations
where matrix elements L7, and N7, [3]. The property of periodicity that the system
has in the z-direction direction is a condition of symmetry that is especially considered.
Due to this property and the form of Eq. (1), Bloch’s theorem establishes a periodicity
condition as ¥ (z — P,y) = ¥(z,y)e %" with K the Bloch vector.

On the other hand, we have that the boundary conditions along the contours I; are
given by W,(Lj ) — LDT(Lj 1 _ gand awfﬁ ) /On = GLDT(Lj +1) /On, for TE polarization, where
j = 1y 2. With these considerations we find a matrix equations M (w) F(w) = 0,
which has a representative matrix M and F' the source vector, and both depend on
the frequency w and the Bloch vector K. To determine the frequency w we define the
determinant function:

D(K,w) = In|det(K,w)]. ®)

Which numerically presents local minimum points that will give us the numerical
dispersion relatio, w = w(K).

3 Photonic Band Structures

In this work we are going to introduce dimensionless values, so our results are expressed
in terms of the reduced Bloch vector given by K, = (P/27)K and the reduced
frequency w, = (P/2m)w. The photonic band structures of a PCW with an array of
perfectly conducting inclusions involving Koch snowflake fractal structures (see Fig. 1)
are shown below.
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Fig. 2. Photonic band structures of the perfectly conducting PCW that is formed with an array of
Koch fractal inclusions of (a) and (b) 0, (c) and (d) 1, (e) and (f) 2, (g) and (h) 3 iterations for
the side lengths L = 1/3 (first column) and L = 1 (second column) of the original triangle. The
band gaps are represented by the red stripes. The insets on the right show unit cells in real space
whose cross sections of inclusions are made up of Koch snowflake fractals of various orders.

The geometrical values of the waveguide taken into account were: b = 7 m
and P = 27 u m. Figure 2 shows the band structures of the rectangular lattice with
Koch snowflake fractals of n = 0, 1, 2 and 3 iterations for the side lengths L = 1/3
[Figs. 2(a), (¢), (e) and (g)] and L = 1 [Figs. 2 (b), (d), (f) and (h)] of the original
triangle, respectively.

The results show the appearance of several band gaps (red stripes) as the size of the
inclusions and the order of fractal iterations increases, which substantially modify the
photonic band structure. Furthermore, it is possible to obtain discrete modes [Figs. 2(d),
(f) and (h)] for a given frequency range and then the PCW with Koch fractal structures
can act as a unimodal filter.
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4 Conclusions

We applied an integral numerical method to calculate the photonic band structures of a
PCW formed by two perfectly conducting parallel plates and an array of of inclusions
involving Koch snowflake fractal structures. The numerical results obtained show good
accuracy and efficiency of the numerical method applied. In addition, it was found that
varying the inclusion size for several iterations of the Koch snowflake fractal allows to
control the band structure of the system to some extent.

The results show the appearance of several band gaps that substantially modify the
photonic band structure. Moreover, it is possible to obtain discrete modes for a certain
range of frequencies and then the PCW acts as an unimodal filter. This system is
considered as a photonic crystal whose band structures correspond in many respects
as a conventional photonic crystal, but using only one material. Therefore, the results of
the optical response of a periodic PCW with Koch fractal structures promise excellent
and interesting optical applications such as filtering and coding of optical signals.
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